The Fraternal Twin Higgs

Who: Andrey Katz (CERN)
When: Monday, February 29, 2016 at 14:15
Where: The CP³ meeting room

Share this pageShare on FacebookTweet about this on TwitterShare on LinkedInGoogle+

I will revisit the Twin Higgs Scenario as a solution to the little hierarchy problem, identify the structure of a minimal model and its viable parameter space, and analyze its collider implications. In this model naturalness generally leads to hidden valley phenomenology. The twin particles, including the top partner, are all Standard-Model neutral, but naturalness favors the existence of twin strong interactions – an asymptotically free force that confines not far above the Standard Model QCD scale – and a Higgs portal interaction. I will show that, taken together, these typically give rise to exotic decays of the Higgs to twin hadrons. Across a substantial portion of the parameter space, certain twin hadrons have visible and often displaced decays, providing a potentially striking LHC signature. I will also emphasize the cosmological safety of the Fraternal Twin Higgs scenario and show that it naturally realizes a Dark Matter candidate. The thermal abundance of the f fraternal twin dark matter is set by twin weak interactions, with a scale tightly tied to the weak scale of the Standard Model by naturalness considerations. The direct detection rate is instead set via fermionic Higgs portal interactions, which are likewise constrained by naturalness considerations but parametrically weaker than those leading to dark matter annihilation.