Challenging Asymptotic Freedom

Preprint number: CP3-Origins-2015-49 DNRF90 and DIAS-2015-49
Author: Francesco Sannino (CP3-Origins & DIAS)
External link:

Several extensions of the standard model feature new colored states that besides modifying the running of the QCD coupling could even lead to the loss of asymptotic freedom. Such a loss would potentially diminish the Wilsonian fundamental value of the theory. However, the recent discovery of complete asymptotically safe vector-like theories cite{Litim:2014uca}, i.e. featuring an interacting UV fixed point in all couplings, elevates these theories to a fundamental status and opens the door to alternative UV completions of (parts of) the standard model. If, for example, QCD rather than being asymptotically free becomes asymptotically safe there would be consequences on the early time evolution of the Universe (the QCD plasma would not be free). It is therefore important to test, both directly and indirectly, the strong coupling running at the highest possible energies. I will review here the attempts made in cite{Becciolini:2014lya} to use pure QCD observables at the Large Hadron Collider (LHC) to place bounds on new colored states. Such bounds do not depend on the detailed properties of the new hypothetical states but on their effective number and mass. We will see that these direct constraints cannot exclude a potentially safe, rather than free, QCD asymptotic nature. A safe QCD scenario would imply that quarks and gluons are only approximately free at some intermediate energies, otherwise are always in chains.